refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15399 results
Sort by

Filters

Technology

Platform

accession-icon GSE62180
Expression data from Arabidopsis rosette leaves
  • organism-icon Arabidopsis thaliana
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The focus of this study was to identify changes in host gene expression induced by the transcription-dependent function of the viral AC2 protein, and induced by the interaction of AC2/C2 with SnRK1.2 (AtAKIN11).

Publication Title

Altered expression of Arabidopsis genes in response to a multifunctional geminivirus pathogenicity protein.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE15489
Mouse alveolar rhabdomyosarcoma and wild-type skeletal muscle
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The highly aggressive muscle cancer alveolar rhabdomyosarcoma (ARMS) is one of the most common soft tissue sarcoma of childhood, yet the outcome for unresectable and metastatic disease is dismal and unchanged for nearly 3 decades. To better understand the pathogenesis of this disease and to facilitate novel preclinical approaches, we previously developed a conditional mouse model of ARMS by faithfully recapitulating the genetic mutations observed in the human disease, i.e. activation of Pax3:Fkhr fusion gene with either p53 or Cdkn2a inactivation. In this report we show that this model recapitulates the immunohistochemical profile and the rapid progression of the human disease. We demonstrate that Pax3:Fkhr expression increases during late preneoplasia, but that tumor cells undergoing metastasis are under apparent selection for Pax3:Fkhr expression. At a whole genome level, a cross-species gene set enrichment analysis and metagene projection study showed that our mouse model is most similar to human ARMS when compared to other pediatric cancers. We have defined an expression profile conserved between mouse and human ARMS as well as a Pax3:Fkhr signature, including the target gene, SKP2. We further identified 7 druggable kinases over-expressed across species. The data affirms the accuracy of this genetically engineered mouse model.

Publication Title

Credentialing a preclinical mouse model of alveolar rhabdomyosarcoma.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE57801
MMS induced expression changes
  • organism-icon Mus musculus, Drosophila melanogaster
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE57788
MMS induced expression changes (Drosophila)
  • organism-icon Drosophila melanogaster
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Despite the high toxicity, alkylating agents are still at the forefront of several clinical protocols used to treat cancers. In this study, we investigated the mechanisms underlying alkylation damage responses, aiming to identify novel strategies to augment alkylating therapy efficacy. In this pursuit, we compared gene expression profiles of evolutionary distant cell types (D. melanogaster Kc167 cells, mouse embryonic fibroblasts and human cancer cells) in response to the alkylating agent methyl-methanesulfonate (MMS). We found that many responses to alkylation damage are conserved across species independent on their tumor/normal phenotypes. Key amongst these observations was the protective role of NRF2-induced GSH production primarily regulating GSH pools essential for MMS detoxification but also controlling activation of unfolded protein response (UPR) needed for mounting survival responses across species. An interesting finding emerged from a non-conserved mammalian-specific induction of mitogen activated protein kinase (MAPK)-dependent inflammatory responses following alkylation, which was not directly related to cell survival but stimulated the production of a pro-inflammatory, invasive and angiogenic secretome in cancer cells. Appropriate blocking of this inflammatory component blocked the invasive phenotype and angiogenesis in vitro and facilitated a controlled tumor killing by alkylation in vivo through inhibition of alkylation-induced angiogenic response, and induction of tumor healing.

Publication Title

Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE57789
MMS induced expression changes (Mouse)
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Despite the high toxicity, alkylating agents are still at the forefront of several clinical protocols used to treat cancers. In this study, we investigated the mechanisms underlying alkylation damage responses, aiming to identify novel strategies to augment alkylating therapy efficacy. In this pursuit, we compared gene expression profiles of evolutionary distant cell types (D. melanogaster Kc167 cells, mouse embryonic fibroblasts and human cancer cells) in response to the alkylating agent methyl-methanesulfonate (MMS). We found that many responses to alkylation damage are conserved across species independent on their tumor/normal phenotypes. Key amongst these observations was the protective role of NRF2-induced GSH production primarily regulating GSH pools essential for MMS detoxification but also controlling activation of unfolded protein response (UPR) needed for mounting survival responses across species. An interesting finding emerged from a non-conserved mammalian-specific induction of mitogen activated protein kinase (MAPK)-dependent inflammatory responses following alkylation, which was not directly related to cell survival but stimulated the production of a pro-inflammatory, invasive and angiogenic secretome in cancer cells. Appropriate blocking of this inflammatory component blocked the invasive phenotype and angiogenesis in vitro and facilitated a controlled tumor killing by alkylation in vivo through inhibition of alkylation-induced angiogenic response, and induction of tumor healing.

Publication Title

Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE39461
Role of PRC2 complex components in prostate cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE78789
Human NPY/AgRP hypothalamic cell lines for study of obesity susceptibility
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Recent data suggests that common genetic risk for metabolic disorders such as obesity may be human-specific and exert effects through the central nervous system. To overcome the limitation of human tissue access for study, we have generated induced human pluripotent stem cell (hiPSC)- derived neuronal cultures which recapture many features of hypothalamic neurons within the arcuate nucleus. Here we have comprehensively characterized this model across development and benchmarked these neurons to in vivo events. We also demonstrate their utility in study of obesity risk variants. The dynamic transcriptome across neuronal maturation was examined using microarray and RNAseq methods at 9 time points. K-means clustering of the longitudinal data was conducted to identify co-regulation and miRNA control of biological processes. The transcriptomes were compared to those of 103 samples from 13 brain regions reported in the Genotype-Tissue Expression database (GTEx) using principal components analysis. Genes with proximity to body mass index (BMI)-associated genetic variants were mapped to the developmentally expressed genesets, and enrichment significance was assessed with Fishers exact test. The human neuronal cultures have a transcriptional and physiological profile of NPY/AgRP hypothalamic neurons. The neuronal transcriptomes were highly correlated with adult hypothalamus as compared to any other brain region from the GTEx. Also, roughly 25% of the transcripts showed changes in expression across maturation stages and potential co-regulation of biological processes that mirror neuronal development in vivo. These developmentally expressed genes were significantly enriched for genes in proximity to BMI-associated variants.

Publication Title

Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Hypothalamic Neurones Provides Developmental Insights into Genetic Loci for Body Weight Regulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39452
Expression data of EZH2-dependent genes in prostate cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

EZH2 is frequently over-expressed in aggressive and metastatic solid tumors, including castration resistant prostate cancer (CRPC). We sought to determine EZH2-dependent gene expression programmes in prostate cancer progression, and found an intriguing functional switch of EZH2 from a repressor to an activator during CRPC development.

Publication Title

EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE27552
Physiological genomics of response to soil drying in diverse Arabidopsis accessions
  • organism-icon Arabidopsis thaliana
  • sample-icon 154 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Physiological genomics of response to soil drying in diverse Arabidopsis accessions.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE27548
cRNA hybridizations of 10 Spring annual accessions of Arabidopsis thaliana under well-watered and mild soil drying
  • organism-icon Arabidopsis thaliana
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

These data provide a basis for exploration of gene expression differences between physiologically diverse Spring annual accessions of Arabidopsis thaliana.

Publication Title

Physiological genomics of response to soil drying in diverse Arabidopsis accessions.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact