refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 44 results
Sort by

Filters

Technology

Platform

accession-icon GSE151041
Deciphering the molecular effects of non-ablative Er:YAG laser treatment in an in vitro model of the non-keratinized mucous membrane
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This study aimed to investigate the molecular effects of non-ablative Er:YAG laser treatment using an in vitro model of the non-keratinized mucous membrane and to compare its molecular effects with other ablative and non-ablative laser systems. In dermatology, the use of non-ablative and ablative fractional lasers has become the gold standard treatment for a number of indications. Each of the individual laser types is advantageous for different types of indications due to its respective properties, but new technologies open up new fields of application for individual laser systems. Performing a comprehensive gene expression profiling we compared the gene regulatory effects of non-ablative Er:YAG laser with other non-ablative and ablative laser systems. In vitro 3D models have proven to be a reliable and reproducible tool to study the molecular biological effects of different laser settings.

Publication Title

Deciphering the molecular effects of non-ablative Er:YAG laser treatment in an in vitro model of the non-keratinized mucous membrane.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE119035
Novel human full-thickness three-dimensional non-keratinized mucous membrane model for pharmacological studies in wound healing
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Efforts are increasingly aiming to develop in vitro models that can provide effective alternatives to in vivo experiments. The main aim of this study was the establishment of an in vitro model of the non-keratinized mucous membrane that can be used as a standardized tool to evaluate biological and therapeutic effects of pharmaceuticals for mucosal wound healing. Performing histological and immunofluorescence analyses with known differentiation markers we proved that our model mimics the two distinctive layers of the mucous membrane the stratified squamous epithelium and the lamina propria. In our study we used our model to investigate molecular effects of a dexpanthenol-containing ointment that is widely used in the wound treatment of the oral mucosa. For that purpose our model exhibits a unique feature in that dexpanthenol and proliferation enhancing additives that may interfere with our studies are not required for the maintenance of the model culture. After setting standardized lesions with a CO2 laser, topical treatment with the dexpanthenol-containing ointment enhanced wound closure in our non-keratinized mucous membrane model compared to placebo and untreated controls. Furthermore, microarray analysis revealed that the treatment of our laser wounded model with the dexpanthenol-containing ointment evoked an upregulated expression of various genes related to accelerated wound healing. Overall, we verified that our mucous membrane model can be utilized in future to monitor ex vivo effects of various topical therapies on mucosa morphology, physiology, and gene expression. Our findings confirm the potential of the non-keratinized mucous membrane model as an in vitro tool for the replacement of pharmacological in vivo studies regarding mucosal wound healing.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE119425
Comprehensive molecular characterization of microneedling therapy in a human three-dimensional skin model
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

We present for the first time the direct molecular effects of microneedling therapy on epidermal keratinocytes and dermal fibroblasts using a standardized 3D skin model. Microneedling treatment resulted in histological alterations and changed the expression of various genes related to epidermal differentiation, inflammation, and dermal remodeling. We speculate that skin microneedling plays a role in dermal remodeling, increases epidermal differentiation, and might also have a direct effect on collagen synthesis. These findings may increase our understanding of the molecular mechanisms of human skin repair induced by microneedling therapy and will allow comparisons with competing applications, such as laser therapies

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE150738
Investigation of the molecular effects of a dexpanthenol-containing ointment and liquid in the aftercare treatment of acute radiodermatitis and mucositis using newly developed 3D models for both skin conditions
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

This study aimed to investigate the molecular effects of radiation and subsequent aftercare treatment with dexpanthenol-containing ointment and liquid on newly established full-thickness 3D skin models depicting acute radiodermatitis and mucositis. We established in vitro models of the non-keratinized mucous membrane as well as normal human skin models. To mimic radiomucositis and radiodermatitis, models were irradiated with 5 Gray. Afterwards, models were treated topically every second day with dexpanthenol-containing ointment or liquid in comparison to placebo and untreated controls.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE114378
Novel human full-thickness, three-dimensional non-keratinized mucous membrane model for pharmacological studies in wound healing
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Efforts are increasingly aiming to develop in vitro models that can provide effective alternatives to in vivo experiments. The main aim of this study was the establishment of an in vitro model of the non-keratinized mucous membrane that can be used as a standardized tool to evaluate biological and therapeutic effects of pharmaceuticals for mucosal wound healing. Performing histological and immunofluorescence analyses with known differentiation markers we proved that our model mimics the two distinctive layers of the mucous membrane the stratified squamous epithelium and the lamina propria. In our study we used our model to investigate molecular effects of a dexpanthenol-containing ointment that is widely used in the wound treatment of the oral mucosa. For that purpose our model exhibits a unique feature in that dexpanthenol and proliferation enhancing additives that may interfere with our studies are not required for the maintenance of the model culture. After setting standardized lesions with a CO2 laser, topical treatment with the dexpanthenol-containing ointment enhanced wound closure in our non-keratinized mucous membrane model compared to placebo and untreated controls. Furthermore, microarray analysis revealed that the treatment of our laser wounded model with the dexpanthenol-containing ointment evoked an upregulated expression of various genes related to accelerated wound healing. Overall, we verified that our mucous membrane model can be utilized in future to monitor ex vivo effects of various topical therapies on mucosa morphology, physiology, and gene expression. Our findings confirm the potential of the non-keratinized mucous membrane model as an in vitro tool for the replacement of pharmacological in vivo studies regarding mucosal wound healing.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE141495
Inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is a natural stabilizer of hyaluronan that modulates biological processes in the skin
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Hyaluronan (HA) is a major component of the skin that exerts a variety of biological functions. Inter-α-trypsin inhibitor heavy chain (ITIH) proteins comprise a family of hyaladherins of which ITIH5 was recently described in skin, playing a functional role in skin morphology and inflammatory skin diseases including allergic contact dermatitis (ACD). The current study focused on the ITIH5-HA interaction and its potential clinical and functional impact in extracellular matrix (ECM) stabilization. Using murine skin models, ITIH5 knockdown fibroblasts and a reactive oxygen species (ROS)-mediated HA degradation assay we proved that ITIH5 binds to HA thereby acting as a stabilizer of HA. Moreover, micro-array profiling revealed the impact of ITIH5 on biological processes such as skin development and ECM homeostasis. To understand more precisely the role of ITIH5 in inflammatory skin diseases such as ACD we generated ITIH5 knockout cells of the KeratinoSens cell line. Performing the in vitro KeratinoSens skin sensitization assay, we detected that ITIH5 decreases the sensitizing potential of moderate and strong contact sensitizers. Taken together, our experiments revealed that ITIH5 forms complexes with HA, thereby on the one hand stabilizing HA and facilitating the formation of ECM structures and on the other hand modulating inflammatory responses.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE103008
Variants of DNMT3A cause transcript-specific DNA methylation and gene expression changes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Variants of <i>DNMT3A</i> cause transcript-specific DNA methylation patterns and affect hematopoiesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE95061
Soft Hydrogels Support Differentiation of Induced Pluripotent Stem Cells toward Mesenchymal Stromal Cells
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Does soft really matter? Differentiation of induced pluripotent stem cells into mesenchymal stromal cells is not influenced by soft hydrogels.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE37067
Pluripotent Stem Cells Escape From Senescence-Associated DNA Methylation Changes
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE55889
Matrix Elasticity Does Not Affect Replicative Senescence or DNA Methylation Patterns of Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Matrix elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact