refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16212 results
Sort by

Filters

Technology

Platform

accession-icon GSE65115
Expression data from human primary cumulus cells culture (hCC)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The cumulus cells niche that surrounds the oocyte is essential for its maturation and presumably for the oocyte to acquire its competence to confer pluripotency. The cells cultured from the human oocyte cumulus niche (hCC) could be used as feeders for the propagation of human pluripotent stem cells in vitro.

Publication Title

Cultured Cells from the Human Oocyte Cumulus Niche Are Efficient Feeders to Propagate Pluripotent Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18265
Transcriptomic analysis of pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE11636
Correlating global gene regulation to morphogenesis and maturation in the chick extra-embryonic vascular system
  • organism-icon Gallus gallus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. We investigated vascular development in vivo by determining global gene regulation throughout the formation of the chick chorio-allantoic membrane (CAM). Our study provides a comprehensive molecular map of vascular maturation during developmental angiogenesis and might thus be a valuable resource to streamline further research of candidates susceptible to mediate pathological angiogenesis.

Publication Title

Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18147
Dys and Eureprogramming
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pluripotent stem cells have the potential to differentiate in vitro in many, if not all, functional cell types. Induced pluripotent stem cells (iPS) have recently emerged as a reproducible model of pluripotent stem cells that can be generated from post-natal tissues. To understand this process at the transcriptome level, we generated iPS cell lines, partially reprogrammed cell lines and compared their transcriptome with that of the partental human foreskin fibroblasts and human embryonic stem cell lines.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE11450
Transcriptome analysis of human mature oocytes and embryonic stem cells reveals overexpression of the proteasome pathway
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The first week of human pre-embryo development is characterized by the induction of totipotency and then pluripotency. The understanding of this delicate process will have far reaching implication for in vitro fertilization and regenerative medicine. Human mature MII oocytes and embryonic stem (ES) cells are both able to achieve the feat of cell reprogramming towards pluripotency, either by somatic cell nuclear transfer or by cell fusion, respectively. Comparison of the transcriptome of these two cell types may highlight genes that are involved in pluripotency initiation. Therefore, based on a microarray compendium of 205 samples, produced in our laboratory or from public databases, we compared the gene expression profile of mature MII oocytes and human ES cells (hESC) to that of somatic tissues. We identified a common oocyte/hESC gene expression profile, which included a strong cell cycle signature, a large chromatin remodelling network (TOP2A, DNMT3B, JARID2, SMARCA5, CBX1, CBX5) and 18 different zinc finger transcription factors, including ZNF84. Strikingly, a large set of genes was found to code for proteins involved in the ubiquitination and proteasome pathway. Upon hESC differentiation into embryoid bodies, the transcription of this pathway declines. In vitro, we observed a selective sensitivity of hESC to the inhibition of the activity of the proteasome, resulting in loss of pluripotency and cell growth at doses without any detectable effects on differentiated cells. Taken together, these results suggest that the proteasome pathway may play a role in initiating and maintaining pluripotency during early development and in hESC.

Publication Title

A gene expression signature shared by human mature oocytes and embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15491
Generation of pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pluripotent stem cells, which are capable to generate any cell type of the human body, such as human embryonic stem cells (hESC) or human induced pluripotent stem cells (hiPS) are a very promising source of cells for regenerative medicine. However, the genesis, the in vitro amplification and the differentiation of these cells still need improvement before clinical use. This study aimed to improve our knowledge on these critical steps in pluripotent stem cell generation. We derived new hESC lines, generated hiPS and compared these cell types with human foreskin fibroblasts and partially reprogrammed fibroblasts.

Publication Title

A gene expression signature shared by human mature oocytes and embryonic stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE87384
Characterization of human Fcrl4-positive B cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

FCRL4 is an immunoregulatory receptor that belongs to the Fc receptor-like (FCRL) family. In healthy individuals, this protein is specifically expressed by memory B cells (MBCs) and is preferentially localized in subephitelial regions of lymphoid tissues. An expansion of FCRL4+ B cells has been shown in blood or other tissues in various infectious or autoimmune pathologies. In the present work, we generated and characterized in vitro FCRL4+ B cells from purified MBCs using T-dependent and/or T-independent stimulation. FCRL4+ B cells account for 17% of cells generated at day-4 of culture. Transcriptomic and phenotypic analysis of FCRL4+ cells show that they are closely related to FCRL4+ tonsillar MBCs. Interestingly, these cells highly express inhibitory receptors genes as described for exhausted FCRL4+ MBCs in the blood of HIV-viremic individuals. In agreement, in vitro generated FCRL4+ B cells show a significant underexpression of cell cycle genes with a two fold weaker number of cell division compared to FCRL4- cells. Finally, resulting from their reduced proliferation and differentiation potential, we show that FCRL4+ cells are not prone to generate plasma cells, contrary to FCRL4- cells. Given the difficulty to access to in vivo FCRL4+ cells, our in vitro model could be of major interest to study the biology of normal and pathological FCRL4+ cells.

Publication Title

Characterization of human FCRL4-positive B cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30818
Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Expression data from rice crownrootless1 mutant and corresponding WT stem bases

Publication Title

Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52640
Transcript profiling of transgenic rice lines where the OsMADS26 gene is over-expressed or down growing cultivated in standard or osmotic stress condition
  • organism-icon Oryza sativa
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Functional analyses of MADS-box transcription factors in plants have unraveled their role in major developmental programs (e.g; flowering and floral organ identity), in stress-related developmental processes such as abscission, fruit ripening and senescence and the role of some of them in stress response regulation was reported. The aim of this study was to decipher the genes that are under the control of the OsMADS26 transcription factor in rice in standard or osmotic stress condition.

Publication Title

OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE53272
Transcript profiling in stem base of crown root less 1 mutant after ectopic expression induction by dexamethasome of CRL1
  • organism-icon Oryza sativa
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Lateral Organ Boundary Domain (LBD) transcription factors are specific of plants and are involved in the control of development. One LBD clade is related to the control of root development (Coudert et al., 2013, Mol. Biol. Evol. 30, 569-572). Belonging to this clade, CROWN ROOT LESS 1 controls the initiation of crown roots in rice (Inukai Plant Cell, 17, 1387-1396, Liu et al., 2005, Plant J., 43, 47-56). The aim of this study was to identify the genes that are regulated by CRL1.

Publication Title

Identification of CROWN ROOTLESS1-regulated genes in rice reveals specific and conserved elements of postembryonic root formation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact