refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14980 results
Sort by

Filters

Technology

Platform

accession-icon GSE1561
EORTC 10994 clinical trial
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

EORTC 10994 is a phase III clinical trial comparing FEC with ET in patients with large operable, locally advanced or inflammatory breast cancer (www.eortc.be). Frozen biopsies were taken at randomisation. RNA was extracted from 100um thickness of 14G core needle biopsies. Adjacent sections were tested by H&E to confirm >20% tumour cell content. 100 ng total RNA per chip were amplified using the Affymetrix small sample protocol (IVT then Enzo). 49 tumours were tested on Affymetrix U133A chips. The CEL files were quantile normalised together using rma. Clinical response data are not available yet.

Publication Title

Identification of molecular apocrine breast tumours by microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6548
An estrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study was performed to check that ESR1 and BMI1 are biologically active after lentiviral transduction of primary human mammary epithelial cells (HMECs) with lentiviral vectors expressing ESR1 and BMI1 from the human PGK promoter. ESR1 targets like PGR, PRLR and GREB1, but not TFF1 and XBP1, were induced by estradiol in the ESR1-expressing cells. BMI1 targets like BMI1, NEFL and CCND2 were repressed in the BMI1-expressing cells. BMI1 suppressed genes associated with squamous and neural differentiation in the ESR1 plus BMI1-expressing cells.

Publication Title

An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14587
Genes induced by VEGF on the chick CAM after 24h
  • organism-icon Gallus gallus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

We determined gene expression profiles which were induced in the chick chorio-allantoic membrane 24 h after application of recombinant human VEGF.

Publication Title

Impaired angiogenesis and tumor development by inhibition of the mitotic kinesin Eg5.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14509
Transcriptome analysis of pancreatic tumor cell invasion and angiogenesis in the PDAC-CAM model
  • organism-icon Gallus gallus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human pancreatic adenocarcinoma cells were grafted on the chick chorioallantoic membrane (CAM). Human and chicken GeneChips were used simultaneously to study gene regulation during PDAC cell invasion.

Publication Title

Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73072
Host gene expression signatures of H1N1, H3N2, HRV, RSV virus infection in adults
  • organism-icon Homo sapiens
  • sample-icon 2886 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference, this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This study develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large-scale serially sampled respiratory virus challenge study, we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample.

Publication Title

An individualized predictor of health and disease using paired reference and target samples.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE138914
Gene expression data from lymphoblastoid cell lines from African American participants in the GENOA study
  • organism-icon Homo sapiens
  • sample-icon 711 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

African-American individuals of the GENOA cohort

Publication Title

Genetic Architecture of Gene Expression in European and African Americans: An eQTL Mapping Study in GENOA.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE18927
University of Washington Human Reference Epigenome Mapping Project
  • organism-icon Homo sapiens
  • sample-icon 97 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

The NIH Roadmap Epigenomics Mapping Consortium aims to produce a public resource of epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease.

Publication Title

The NIH Roadmap Epigenomics Mapping Consortium.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE30211
Gene expression changes during Type 1 diabetes pathogenesis
  • organism-icon Homo sapiens
  • sample-icon 724 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip, Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE45642
Circadian patterns of gene expression in the human brain and disruption in major depressive disorder [control set]
  • organism-icon Homo sapiens
  • sample-icon 667 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A cardinal symptom of Major Depressive Disorder (MDD) is the disruption of circadian patterns. Yet, to date, there is no direct evidence of circadian clock dysregulation in the brains of MDD patients. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain was difficult to characterize. Here we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-hour cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses ('Controls') and 34 MDD patients. Our dataset covered ~12,000 transcripts in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (AnCg), hippocampus (HC), amygdala (AMY), nucleus accumbens (NAcc) and cerebellum (CB). Several hundred transcripts in each region showed 24-hour cyclic patterns in Controls, and >100 transcripts exhibited consistent rhythmicity and phase-synchrony across regions. Among the top ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERB), DBP, BHLHE40(DEC1), and BHLHE41(DEC2). The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in MDD brains, due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This is the first transcriptome-wide analysis of cyclic patterns in the human brain and demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggest novel molecular targets for treatment of mood disorders.

Publication Title

Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE71620
The effects of aging on circadian patterns of gene expression in the human prefrontal cortex
  • organism-icon Homo sapiens
  • sample-icon 419 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

With aging, significant changes in circadian rhythms occur, including a shift in phase toward a morning chronotype and a loss of rhythmicity in circulating hormones. However, the effects of aging on molecular rhythms in the human brain have remained elusive. Here we employed a previously-described time-of-death analyses to identify transcripts throughout the genome that have a significant circadian rhythm in expression in the human prefrontal cortex (Brodmanns areas (BA) 11 and 47). Expression levels were determined by microarray analysis in 146 individuals. Rhythmicity in expression was found in ~10% of detected transcripts (p<0.05). Using a meta-analysis across the two brain areas, we identified a core set of 235 genes (q<0.05) with significant circadian rhythms of expression. These 235 genes showed 92% concordance in the phase of expression between the two areas. In addition to the canonical core circadian genes, a number of other genes were found to exhibit rhythmic expression in the brain. Notably, we identified more than one thousand genes (1186 in BA11; 1591 in BA47) that exhibited age-dependent rhythmicity or alterations in rhythmicity patterns with aging. Interestingly, a set of transcripts gained rhythmicity in older individuals, which may represent a compensatory mechanism due to a loss of canonical clock function. Thus, we confirm that rhythmic gene expression can be reliably measured in human brain and identified for the first time significant changes in molecular rhythms with aging that may contribute to altered cognition, sleep and mood in later life.

Publication Title

Effects of aging on circadian patterns of gene expression in the human prefrontal cortex.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact