refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15513 results
Sort by

Filters

Technology

Platform

accession-icon GSE48839
Genome-wide transcript profiling for native porcine valvular interstitial cells and those cultured on TCPS and treated with TGF-1
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Fibrotic diseases have significant health impact and have been associated with differentiation of the resident fibroblasts into myofibroblasts. In particular, stiffened extracellular matrix and TGF-1 in fibrotic lesions have been shown to promote pathogenic myofibroblast activation and progression of fibrosis in various tissues. To better understand the roles of mechanical and chemical cues on myofibroblast differentiation and how they may crosstalk, we cultured primary valvular interstitial cells (VICs) isolated from porcine aortic valves and studied how traditional TCPS culture, which presents a non-physiologically stiff environment, and TGF-1 affect native VIC phenotypes.

Publication Title

Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE45651
Expression data from the starved first larval stage (L1) C. elegans animals that were incubated in S-basal buffer for 30 hours after bleaching
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

How animals coordinate gene expression in response to starvation is an outstanding problem closely linked to aging, obesity, and cancer. Newly hatched Caenorhabditis elegans respond to food deprivation by halting development and promoting long-term survival (L1 diapause), thereby providing an excellent model to study starvation response. Through a genetic search, we have discovered that the tumor suppressor Rb critically promotes survival during L1 diapause and likely does so by regulating the expression of genes in both insulin-IGF-1 signaling (IIS)-dependent and -independent pathways mainly in neurons and the intestine. Global gene expression analyses suggested that Rb maintains the starvation-induced transcriptome and represses the re-feeding induced transcriptome, including the repression of many pathogen/toxin/oxidative stress-inducible and metabolic genes, as well as the activation of many other stress-resistant genes, mitochondrial respiratory chain genes, and potential IIS receptor antagonists. Notably, the majority of genes dysregulated in starved L1 Rb(-) animals were not found to be dysregulated in fed conditions. Together, these findings identify Rb as a critical regulator of the starvation response and suggest a link between functions of tumor suppressors and starvation survival. These results may provide mechanistic insights into why cancer cells are often hypersensitive to starvation treatment.

Publication Title

The tumor suppressor Rb critically regulates starvation-induced stress response in C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84894
Expression data from starved first larval stage of wildtype and hyl-1(ok976); lagr-1(gk327) C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Our understanding of cellular mechanisms by which animals regulate their response to starvation is limited despite the close relevance of the problem to major human health issues. L1 diapause of Caenorhabditis elegans, where newly hatched first stage larval arrested in response to food-less environment, is an excellent system to study the problem. We found through genetic manipulation and lipid analysis that ceramide biosynthesis, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic and expression analyses indicate that ceramide likely regulate this response by affecting gene expression and activity in multiple regulatory pathways known to regulate starvation-induced stress, including the insulin-IGF-1 signaling (IIS) pathway, Rb and other pathways that mediate pathogen/toxin/oxidative stress responses. These findings provide an important insight into the roles of sphingolipid metabolism in not only starvation response but also aging and food-response related human health problems.

Publication Title

Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64973
Analysis of gene expression between monomethyl branched-chain fatty acid deficient (elo-5) and wild type N2 C. elegans L1 larvae hatched on food-free NGM plates
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Gene expresssion is not globally shut down in elo-5 as compared to N2

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE73623
Valvular intersitial cell transcriptional response to culture platform
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.0 ST Array (porgene10st)

Description

Expression data from valvular interstitial cells cultured in 2D or 3D PEG hydrogel systems compared to culture on tissue culture polystyrene and freshly isolated cells

Publication Title

Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19199
Expression data from serum-starved control and CDK8 depleted cells following serum stimulation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The Mediator complex allows communication between transcription factors and RNA polymerase II (RNAPII). CDK8, the kinase found in some variants of Mediator, has been characterized mostly as a transcriptional repressor. Recently, CDK8 was demonstrated to be a potent oncoprotein. Here we show that CDK8 is predominantly a positive regulator of gene expression within the serum response network, as it is required for expression of several members of the AP-1 and EGR family of oncogenic transcription factors (e.g. FOS, JUN, EGR1-3). Mechanistic studies demonstrate that CDK8 is not required for recruitment of RNAPII and promoter escape at these loci. Instead, CDK8 depletion leads to the appearance of slower elongation complexes carrying hypophosphorylated RNAPII. We show that CDK8-Mediator regulates precise steps in the assembly of a functional elongation complex, including the recruitment of P-TEFb and BRD4, but is dispensable for recruitment of SPT5 and FACT. Furthermore, CDK8-Mediator specifically interacts with P-TEFb. Thus, we uncovered a novel role for CDK8 in transcriptional regulation that may contribute to its oncogenic effects.

Publication Title

CDK8 is a positive regulator of transcriptional elongation within the serum response network.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE36330
Comparison of exercise and pregnancy-induced cardiac hypertrophy
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Comparative analysis of mouse cardiac left ventricle gene expression: voluntary wheel exercise and pregnancy-induced cardiac hypertrophy

Publication Title

Distinct cardiac transcriptional profiles defining pregnancy and exercise.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE37404
Ionizing Radiation-induced expression response in Drosophila Larvae
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Genome-wide expression analysis comparison with and without ionizing radiation in p53 mutant and wild type Drosophila larvae

Publication Title

Genome-wide expression analysis identifies a modulator of ionizing radiation-induced p53-independent apoptosis in Drosophila melanogaster.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE8162
Age-related transcriptional changes and the effect of dietary supplementation of vitamin E in the mouse heart and brain
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Anti-inflammatory properties of alpha- and gamma-tocopherol.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE25700
Comparative analysis of mouse cardiac gene expression: diet, sex, and disease
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The perception that soy food products and dietary supplements will have beneficial effects on heart health has led to a massive consumer market. However, we have previously noted that diet has a profound effect on disease progression in a genetic model of hypertrophic cardiomyopathy (HCM). In this model, a soy-based diet negatively impacts cardiac function in male mice.

Publication Title

Remodeling the cardiac transcriptional landscape with diet.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact