Background: Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. It is well known that CML cells are genetically unstable. However, the mechanisms by which these cells acquire genetic alterations are poorly understood. Imatinib mesylate (IM) is the standard therapy for newly diagnosed CML patients. IM targets the oncogenic kinase activity of BCR-ABL. Objective: To study the gene expression profile of BM hematopoietic cells in the same patients with CML before and one month after imatinib therapy. Methods: Samples from patients with CML were analyzed using Affymetrix GeneChip Expression Arrays. Results: A total of 594 differentially expressed genes, most of which (393 genes) were downregulated, as a result of imatinib therapy were observed. Conclusions: The blockade of oncoprotein Bcr-abl by imatinib could cause a decrease in the expression of key DNA repair genes, and cells try to restore the normal gene expression levels required for cell proliferation and chromosomal integrity.
Imatinib therapy of chronic myeloid leukemia restores the expression levels of key genes for DNA damage and cell-cycle progression.
Age, Specimen part
View SamplesWe have used microarray technology to identify the transcriptional targets of Rho subfamily GTPases. This analysis indicated that murine fibroblasts transformed by these proteins show similar transcriptomal profiles. Functional annotation of the regulated genes indicate that Rho subfamily GTPases target a wide spectrum of biological functions, although loci encoding proteins linked to proliferation and DNA synthesis/transcription are up-regulated preferentially. Rho proteins promote four main networks of interacting proteins nucleated around E2F, c-Jun, c-Myc, and p53. Of those, E2F, c-Jun and c-Myc are essential for the maintenance of cell transformation. Inhibition of Rock, one of the main Rho GTPase targets, leads to small changes in the transcriptome of Rho-transformed cells. Rock inhibition decreases c-myc gene expression without affecting the E2F and c-Jun pathways. Loss-of-function studies demonstrate that c-Myc is important for the blockage of cell-contact inhibition rather than for promoting the proliferation of Rho-transformed cells. However, c-Myc overexpression does not bypass the inhibition of cell transformation induced by Rock blockage, indicating that c-Myc is essential, but not sufficient, for Rock-dependent transformation. These results reveal the complexity of the genetic program orchestrated by the Rho subfamily and pinpoint protein networks that mediate different aspects of the malignant phenotype of Rho-transformed cells
Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases.
No sample metadata fields
View SamplesEffect of the overexpression of the oncogenic form of the Vav2 protein in the NIH3T3 cell line under serum deprivation conditions. oncovav2-transformed NIH3T3 cells grown in serum-deprived medium (Vav2SD) are compared to the parental NIH3T3 controls under the same growth conditions (ContSD). Vav2SD cells are also compared to the oncovav2-transformed NIH3T3 cells growing exponentially and the NIH3T3 growing exponentially.
Microarray analysis of gene expression with age in individual nematodes.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.
Sex, Age, Specimen part, Disease, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.
Specimen part, Cell line, Treatment
View SamplesKinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.
The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.
Specimen part, Treatment
View SamplesEpidermal stem cells ensure proper faring of skin homeostatic processes under both physiological and challenging conditions. Currently, the molecular events underpinning ageing within the epidermal stem cell niche are poorly understood.
In Silico Analysis of the Age-Dependent Evolution of the Transcriptome of Mouse Skin Stem Cells.
Age, Specimen part
View SamplesThe mechanisms of resistance to the antibody-drug conjugate, T-DM1, were studied on clones derived from breast cancer cell line, BT474.
No associated publication
Cell line
View SamplesRobles-Valero et al. report a tumor suppression role for the otherwise oncogenic Vav1 Rho GEF. This paradoxical action is mediated by the catalysis-independent buffering of Notch1 signaling in immature T cells.
A Paradoxical Tumor-Suppressor Role for the Rac1 Exchange Factor Vav1 in T Cell Acute Lymphoblastic Leukemia.
Specimen part, Treatment
View SamplesKinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.
The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.
Cell line, Treatment
View Samples