Insulin degrading enzyme (IDE) is a major enzyme responsible for insulin degradation in the liver. The modulation of insulin degrading enzyme activity is hypothesized to be a link between T2DM and liver cancer. Results provide insight into role of IDE in proliferation and other cell functions.
Modulation of insulin degrading enzyme activity and liver cell proliferation.
Cell line
View SamplesTH-MYCN transgenic (Tg) mice are the model for neuroblastoma. One of the sympathetic ganglia is the origin of neuroblastoma in those mice. The tumor incidences of homozygotes and hemizygotes are 100% and 70-80%, respectively.
Inactivation of SMC2 shows a synergistic lethal response in MYCN-amplified neuroblastoma cells.
Specimen part
View SamplesTo examine irreversible changes in the developing brain following seizures, juvenile inbred mice were intraperitoneally injected with kainate and nicotine.
Increased expression of the lysosomal protease cathepsin S in hippocampal microglia following kainate-induced seizures.
No sample metadata fields
View SamplesEpithelial gland development within the uterine lining during prepubertal period is important to ensure successful gestation in adults. Lgr5 expression in uterus becomes largely restricted to the tips of developing glands after birth. These Lgr5 highly expressing cells function as stem cells during gland development.
Neonatal Wnt-dependent Lgr5 positive stem cells are essential for uterine gland development.
Specimen part
View SamplesScope: As a result of population ageing, the number of Alzheimer’s disease (AD) patients has rapidly increased. There are many hypothesises on the pathogenesis of AD, but its detailed molecular mechanism is still unknown, and so no effective preventive or therapeutic measures have been established. Some reports showed a decrease in levels of norepinephrine (NE) has been suspected to be involved in the decline of cognitive function in AD patients and NE concentrations were decreased in postmortem AD patient brains. Tyr-Trp was identified as being the most effective dipeptide in enhancing norepinephrine (NE) synthesis and metabolism. And Tyr-Trp treatment ameliorated the short-term memory dysfunction in AD model mice caused by amyloid beta (Aβ) 25-35. So, the purpose of this study was to investigate the preventive or/and protective effects of Tyr-Trp administration in AD model mice.
Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease.
Specimen part
View SamplesPaf1 and Ski8 were selected as representative subunits of the Paf1 complex (PAF1C), and RNA-seq analysis was performed in triplicate to compare the genes affected by Paf1, Ski8, and Rtf1 knockdown in HeLa cells. Overall design: Total RNA was harvested from control HeLa and Ski8 knockdown cells at day 4 and from Rtf1 or Paf1 knockdown cells at day 7 and was subjected to RNA-seq in triplicates.
Correction for Cao et al., Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex.
No sample metadata fields
View SamplesAltered gene expression in the sphingosine 1-phosphate receptor 2 (S1P2)-deficient or sphingosine 1-phosphate receptor 3 (S1P3)-deficient brain.
Frequent spontaneous seizures followed by spatial working memory/anxiety deficits in mice lacking sphingosine 1-phosphate receptor 2.
No sample metadata fields
View SamplesDuring seed maturation, the embryo accumulates nutrition storage compounds such as oil and reservve proteins, and acquires dormancy and desiccation tolerance. Arabidopsis transcription factors LEC1, LEC2, FUS3 and ABI3 are known as the master regulators of seed maturation because all these events during the seed maturation are severely affected by the respective mutants. In addition, the lec1, lec2 and fus3 mutants exhibit some heterochronic characteristics, as exemplified by the development of true leaf-like cotyledons during embryogenesis. To characterize these mutants at the whole genome expression level, microarray experiments were performed.
Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER-body formation in Arabidopsis leafy cotyledon mutants.
Specimen part
View SamplesAlthough gain of chromosome-5p is one of the most frequent DNA copy number imbalances in cervical squamous cell carcinoma (SCC), the genes that drive its selection remain poorly understood. In a previous cross-sectional clinical study we showed that the microRNA processor Drosha (located on chromosome-5p) demonstrates frequent copy-number gain and over-expression in cervical SCC, associated with altered microRNA profiles. Here, we have conducted gene depletion/over-expression experiments to demonstrate the functional significance of up-regulated Drosha in cervical SCC cells. Drosha depletion by RNA-interference (RNAi) produced significant, specific reductions in cell motility/invasiveness in vitro, with a silent RNAi-resistant Drosha mutation providing phenotype rescue. Unsupervised hierarchical clustering following global profiling of 319 microRNAs in eighteen cervical SCC cell line specimens generated two groups according to Drosha expression levels. Altering Drosha levels in individual SCC lines changed the group into which the cells clustered, with gene depletion effects being rescued by the RNAi-resistant mutation. Forty-five microRNAs showed significant differential expression between the groups, including four of fourteen that were differentially-expressed in association with Drosha levels in clinical samples. miR-31 up-regulation in Drosha over-expressing samples/cell lines was the highest-ranked change (by adjusted p-value) in both analyses, an observation validated by Northern blotting. These functional data support the role of Drosha as an oncogene in cervical SCC, by affecting expression of cancer-associated microRNAs that have the potential to regulate numerous protein-coding genes.
Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles.
Sex, Cell line
View SamplesComparison of mRNA expression profiles in W12 Series 1 cervical ectokeratinocytes at passage number 22 versus 19 (during which time the cells gain an invasive phenotype)
Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles.
Sex, Cell line
View Samples