Insulin degrading enzyme (IDE) is a major enzyme responsible for insulin degradation in the liver. The modulation of insulin degrading enzyme activity is hypothesized to be a link between T2DM and liver cancer. Results provide insight into role of IDE in proliferation and other cell functions.
Modulation of insulin degrading enzyme activity and liver cell proliferation.
Cell line
View SamplesJAK inhibitors like tofacitinib were thought to act primarily on T cells. However, our data and recent research suggest that JAK receptors are also present on keratinocytes. Here, we show effect of tofacitinib on primary keratinocytes, which could explain effects of topical tofacitinib treatment in psoriasis.
Tofacitinib Represses the Janus Kinase-Signal Transducer and Activators of Transcription Signalling Pathway in Keratinocytes.
Specimen part
View SamplesInvestigation of global gene expression changes in Saccharomyces cerevisiae strain NRRL Y-12632 (ATCC 18824) grown in media made with asbestos mine tailings-laden water compared to the control grown in media made with double distilled water
Microarray data and gene expression statistics for <i>Saccharomyces cerevisiae</i> exposed to simulated asbestos mine drainage.
No sample metadata fields
View SamplesWe wanted to understand at what level BTS acts, i.e. how upstream BTS acts and if BTS misregulation affets only a subset or multiple subsets of Fe regulated genes. We studied WT and bts-3 mutant roots.
BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana.
Specimen part
View SamplesmiR-146a acts as a negative feedback regulator of inflammation. To investigate the role of miR-146a in psoriasis psoriasiform skin inflammation was indeuced in Mir-146a-/- and wild type mice (C57BL6J) by topical applciation of imiquimod (IMQ)-cream (Aldara).
MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis.
Age, Specimen part
View SamplesMiR-31 is one of the most highly overexpressed miRNAs in psoriasis skin; however, its biological role in the disease has not been studied. Here we show that miR-31 is markedly overexpressed in psoriasis keratinocytes. To study the biological role of miR-31 in keratinocytes, we transfected miR-31 hairpin inhibitor (anti-miR-31) into primary human keratinocytes to inhibit endogenous miR-31. We performed a global transcriptome analysis of keratinocytes upon suppression of endogenous miR-31 using Affymetrix arrays.
MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40.
Specimen part
View SamplesMelanoma resistant to MAPK inhibitors (MAPKi) displays loss of fitness upon experimental MAPKi withdrawal and, clinically, may be resensitized to MAPKi therapy after a drug holiday. Here, we uncovered and therapeutically exploited the mechanisms of MAPKi addiction in MAPKi-resistant BRAF MUT or NRAS MUT melanoma. MAPKi-addiction phenotypes evident upon drug withdrawal spanned transient cell-cycle slowdown to cell-death responses, the latter of which required a robust phosphorylated ERK (pERK) rebound. Generally, drug withdrawal–induced pERK rebound upregulated p38–FRA1–JUNB–CDKN1A and downregulated proliferation, but only a robust pERK rebound resulted in DNA damage and parthanatos-related cell death. Importantly, pharmacologically impairing DNA damage repair during MAPKi withdrawal augmented MAPKi addiction across the board by converting a cell-cycle deceleration to a caspase-dependent cell-death response or by furthering parthanatos related cell death. Specifically in MEKi-resistant NRAS MUT or atypical BRAF MUT melanoma, treatment with a type I RAF inhibitor intensified pERK rebound elicited by MEKi withdrawal, thereby promoting a cell death–predominant MAPKi-addiction phenotype. Thus, MAPKi discontinuation upon disease progression should be coupled with specific strategies that augment MAPKi addiction. Overall design: BRAF/MEK inhibitors resistant cell lines M249DDR5 and SKMEL28DDR1 were assayed for their responses after 6 hr of BRAF/MEK inhibitor treatment and after inhibitors withdrawal (by washin) for 6 and 24 hours
Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance.
Specimen part
View SamplesMelanoma resistance to MAPK- or T cell checkpoint-targeted therapies represents a major clinical challenge, and treatment failures of MAPK-targeted therapies due to acquired resistance often require salvage immunotherapies. We show that genomic analysis of acquired resistance to MAPK inhibitors revealed key driver genes but failedto adequately account for clinical resistance. From a large-scale comparative analysis of temporal transcriptomes from patient-matched tumor biopsies, we discovered highly recurrent differential expression and signature outputs of c-MET, LEF1 and YAP1 as drivers of acquired MAPK inhibitor resistance. Moreover, integration of gene- and signature-based transcriptomic analysis revealed profound CD8 T cell deficiency detected in half of resistant melanomas in association with downregulation of dendritic cells and antigen presentation. We also propose a major methylomic basis to transcriptomic evolution under MAPK inhibitor selection. Thus, this database provides a rich informational resource, and the current landscape represents a benchmark to understanding melanoma therapeutic resistance. Overall design: Melanoma biopsies pre and post MAPKi treatment were sent for RNAseq analysis
Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance.
No sample metadata fields
View SamplesMelanoma resistance to MAPK- or T cell checkpoint-targeted therapies represents a major clinical challenge, and treatment failures of MAPK-targeted therapies due to acquired resistance often require salvage immunotherapies. We show that genomic analysis of acquired resistance to MAPK inhibitors revealed key driver genes but failedto adequately account for clinical resistance. From a large-scale comparative analysis of temporal transcriptomes from patient-matched tumor biopsies, we discovered highly recurrent differential expression and signature outputs of c-MET, LEF1 and YAP1 as drivers of acquired MAPK inhibitor resistance. Moreover, integration of gene- and signature-based transcriptomic analysis revealed profound CD8 T cell deficiency detected in half of resistant melanomas in association with downregulation of dendritic cells and antigen presentation. We also propose a major methylomic basis to transcriptomic evolution under MAPK inhibitor selection. Thus, this database provides a rich informational resource, and the current landscape represents a benchmark to understanding melanoma therapeutic resistance.
Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance.
Specimen part
View Samples